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Sampling Variances and Covariances

of Parameter Estimates in Item Response Theory
Abstract

This paper develops a possible method for computing the asymptotic
sampling variance-covariance matrix of joint maximum likelihood estimates
in item response theory when both item parameters and abilities are
unknown. For a set of artificial data, results are compared with empirical
values; also with the variance-covariance matrices found by the usual
formulas for the case where the abilities are known, or where the item
parameters are known. The results are consistent with the conjecture
that the new method is asymptotically correct except for errors due to

grouping.
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Sampling Variances and Covariances

of Parameter LEstimates in Item response Theorv*

In item response theory (IRT), the observaticons come in the form
of an n -bv- N matrix, with one row for each item and one column for
each examinee. The joint frequency distribution of the observations
depends on a vector of N 'abilitv' parameters~-one for each person--
and on a matrix of item parameters. Here, we will consider only the
three-parameter logistic model for dichotomouslv scored items, so there
will be three item parameters ( a , b, and ¢ ) for earh of n
items. A method will be developed for computing the asvmptotic sampling
variance-covariance matrix when both abilities and item parameters are
unknown. Until this is done we do not know the standard errors ot the
parameter estimates, which handicaps development of a goodness-of fit test
and other statistics required in applications of IRT.

If the item (ability) parameters are known, the estimated abilitv
(item) parameters have independent sampling distributions. It can be
shown (see Bradlev & cart, 1962) that the maximum likelihood estimates
of the ability (item) parameters are consistent. Hence the asvmptotic
sampling variance for an estimated abilitv parameter is given by the

usual formula
Var(i asbyo = facl/ - )7 , (1)

where g is the estimated ability parameter, [ is the lop of the
1

likelihood, and o , b, and ¢ are the known vectors of item parameters.

*This work wias supported in part by contract NOOO14-B0-C-0402,
project desipgnation NR 150-453 between the Office of Naval Research
and Fducational Testing Service. Reproduction in whole or in part is
permitted tor anv purpose of the I'nited States Government.
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Similarly the asvmptotic sampling variance-covariance matrix of the

estimated item parameters for an item is given by

H r« - ) A '5,( Jl 1!"1
”Cov(tv,‘w. Y= L& ( ST Ik (vyw =1,2,3) (1b)
vV ow
where ! is a vector consisting of the estimated a , b , and «
for a single item and is the known vector of abilities.

The right-hand side is the inverse of a 3~bv-3 matrix.

When neither item nor abilityv parameters are known, all param-
eters are often estimated simultaneously by maximum likelihood. 1In
the (Rasch) case where there is only one parameter per item, Haberman
(1977) has shown that all parameter estimates will converge tc theiv
true values (will be consistent) when the number of examinees and the
number of test items become large simultanecusly. Fmpirical results
suggest that consistency probably also holds when all parameters are
estimated simultaneously under the three-parameter model. 1If so,
it is reasonable that the asymptotic sampling variance-covariance matrix

of all estimated parameters will be ziven by the usual formula

‘ . . y ¥ N -1 a
CCovin Lyt b= s ( J' ,*( )i (pra=1,2,...,M) (2)
p q
where M = 3n + N -2 and = = . S apnbeagbyesna G b s
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Since standard errors are urgently needed in practical work
where all parameters are estimated simultaneously by maximum likelihood,
this report compares numerical values provided by (2) with values provided
by (1) and with empirically observed sampling fluctuations. The com-
parisons to be presented suggest that (2) provides useful values for
the desircd standard errors.

There are several special problems that arise in the evaluation
and practical utilization of (2), problems that do not arise in the
situation where (1) is appropriate:

1. Until an origin and scale are specified, the parameters

are not identifiable.

2. The mathematical formulation is complicated by the choice
of origin and scale.

3. The usual choice of origin and scale when estimating IRT
parameters is inconvenient for mathematical purposes.

4, The numerical values of the sampling variances are verv
much a‘tected by the choice of origin and scale.

5. FEquation (2) requires the inversion of a matrix of order

N+ In -~ 2 where N may be several thousand.

These problems will be considered in subsequent sections.
1. Parameterization

Ihe appropriate likelihood function is (Lord, 1980)

Lla,b,c; 1) = R Ui B a B




where is the vector of the N ability parameters:; a , b, and
¢ are each a vector of n  item parameters, ' = “iq: is the matrix
of item responses u, (= 0 or 1); finallyv Qil =1 -7, and

a R ;

Pia is the item response function, the penbability ~f a correct
answer by examinee a to item i . Fach given Pia is a function
of a and of a , bi , and Coon but not of anv other parameters.
In numerical work here, Pi_ will be taken to be the three-parameter
logistic function

1 - ¢

N i
i: i + ~-1. io- )
ia i 1 exp(-1 7ai(x,a bi)]

For mathematical purposes, however, it is onlv necessary to state that
Pm is an increasing function of o

I we add some constant to all . and subtract the same constant
from all hi , all Pia will be unchanged. This means that the origin
used for measuring ability is entirely arbitrarv. 1If we multiply each
and each hi bv some constant and divide each ai by the same
constant, again all Pia will be unchanged. This means that the unit
used to measure abilityv is entirelv arbitrarv. Since we can change
the origin and unit of the = without changing (3), it follows that

a

., a, bh, and ¢ are not identifiable and cannot be estimated from

(3) without further specification.

To conform to a commonly used procedure, we could choose the
origin and scale so that for some specified group of examinces the
mean of the '1] is zero and the variance Is one. This is not con-

venient mathematicallvy, however. Instead, two other methods of
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specifying the origin and scale will be used, even though this will
complicate matters later on when the results are applied in

practice. In the first method, without loss of generalitv, arbitrary

numerical values will be assigned to GN—I and to GN .
The M = N + 3n - 2 likelihood equations are
n N pia
0= T (u. -P )—2— (p=1,2,...,M) (5)
. _ i ia” P, Q,
i=1 a=1 ia~ia

where pd = 3P, /51
P 1a P

2. Fisher Information Matrix

The Fisher information matrix on the right of (2) now has as a

typical element

Y n n N N piaplhb
I =§(=2—=)= 3 v 1 & Cov(u, ,u, )
3t 3 T ‘ P P, Q, a’ jb
P T, 0T i=1 j=1 a=1 b=1 ‘ialia’ jbYib 1an )
(psg=1,2,...,M)
Because of local independence and random sampling of examinees,
= &,.8 P, Q
Coviug, »usy) 1i"ab ia‘ia
where £ " =1 it s=1+t, &st = (0 otherwise. Thus the typical
s s
element is
n N Piapiu
1= R (pa=1,2,00M) (©)

- B 'y O
P 4ot a=1 Pia%ia
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is the 3-by~l1 joint Fisher information vector for item

3 4
pia/a‘a

PiaQia

—————i

is the 3-by-3 Fisher information matrix for

is the Fisher information for examinee




J. Matrix Inversion

The following general formula for inverting a partitioped matrix

mayv be applied to (7)

1 »n
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where

T - s (-

~3

(R

The matrix S 1is easily inverted since it is a diagonal supermatrix:

The notation on the right denotes a diagonal matrix with diagonal ele-
ments 8;1 . These last are easily computed since each Si is onlv
3 by 3.

All the matrix operations indicated on the right side of (%) can
be carried out on the computer without difficulty, with one exception:

the inversion of Z , which is N' by N' . The aprvoxicar ion vsed bere

to invert Z r. [ies on grouping the *j into 16 class intervals ot }
width 0.5, covering the range -5 ;-“a < 3 . Each 93 in a given

1
i

class interval is replaced by the midpoint of the interval.
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[e]

T ', where T =t
o g £

ti

Now T will be a diagonal supermatrix T

8

matrices, the columns of any one matrix being all identical:

Fs £ 1'€£.1,... ! .

iy Ealas syl
where fg = 1fia? for any examinee a in class interval g and
1 is a unit vector whose length is Ng

8

rrs™i =1 frsTle 1
-g-g  .hin
-1
Denote the scalar f'S W . ;
ty fh by \gh We now have
72 =T - I I
/. - Wgh.l y
M T w !
gh “gh%g%h

For computation purposes, 2 still has N' rows and columns,
net just 16. For the usual sample size, it is still not feasible to
invert Z with a standard inversion program.

Consider the problem of inverting le , the N1 =hv~ Nl upver

Jet corner of 7 . By (11}, (12), and a standard formula,

1

g

is a scalar matrix with dimensions Ng by N , and Ng is the number

of people in class interval g . Also, F will be a row vector of 16

(10)

-1
The product F'S "F can now be written as a 16-by-16 supermatrix:

(11)

(12)




Since T. = tlI , Where tl is scalar, this becomes

’ 1
¥4

R
1 tl t2 - tw,_.N
1 1111

Next, the upper left 2-by-2 supermatrix in 7 can be invertd.
as in (&), wusing the standard formula for the inversion of a

partitioned matrix:

1L -1

, -1 It SR S B R
11 “12 ‘10t ot fofn taM (o {
) e |
— - R - ' -
1 221A11 ! H
; i ” -1, .
where H = a7 "a1711%12 It can be seen that H has the
same general form as 7 and can thus be inverted as in (13);

11

so (14) can readily be calculated.
. . -1 .
Next, substitute (14) for xll in the foregoing procedurc,

and repeat this procedure, in such a way as to invert the upper
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lefr 3-by-3 supermatrix in Z . A total of fifteen repetitions enable
us to invert the 16-by-16 supermatrix 7 . FEquation (8) is now used
for one final inversion, the result being the desired variance-covariance
matrix of all N + 3n -~ 2 pararmeters.

The lé-by-16 variance~covariance supermatrix for the - consists
of 256 blocks. The eclements are all the same within a block except
tor diagonal blocks, each of which has a variance (instead of a
covariance) repeated along its diagonal. Any two examinees in the
same class interval will have identical Var . and identical sampling

covariances with anv other given parameter estimate.

7

4. Reparameterization

In Section 1, in order to have identifiable parameters, an origin

and scale was chosen so that Nl and N had arbitrary preassigned
A Al 1

values. Anv other choice of origin and scale would result in a linear

transformation of parameters. The likelihood function would remain
unchanged tor every pattern of item responses.

The choice of unit (but not the choice of origin) has one
completely obvious effect on the sampling errors of parameter ostimates.
[f the unit is changed, the standard errors for the b 's and 's
will be multiplied by the ratio of the new scale unit to the old scols
anit. The standard errors for the a 's will be divided by this rati..

A second important effect is casily overlooked: the standard error
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of the maximum likelihood estimator depends not only on the choice of
scale, but also on how the (origin and) scale is specified.

Suppose that the true numerical values of all Ga (a=1,...,N)
are specified on some arbitrary scale. Suppose next that our test is
too difficult for examinee N . This means that the T1ikelihood func-
tion is rather insensitive to variations in ON . If we could repeat
our testing with several parallel test forms, we would find a wide range
of estimates of ON . In such a situation, the difference between

true N-1 and clearly cannot be estimated well from the

N

examinee responses. If we define the scale by treating GN and

?N—l as known, our estimates of every 6a mav fluctuate grossly,
simply because the scale unit GN - eN—l is not well determined by
the data.

Suppose next that we relabel all examinees so that examinees
N -1 and N are not the same examinees as before. The ability scale
has not been changed from the preceding paragraph; it is the procedure
for defining the scale that has been changed. The true ~ for each
examinee is still the same as before. Suppose the new examinees N - 1
and N are both at ability levels where our test mearures accuratelv.

If, further, the true and - are substantially different

N-1 N
from cach other, the ditficulty of the previous paragraph disappears:

Throughout the abiiity range where the test is designed to measure

accurately, the standard errors of all v, may be reasonably small.
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For example, suppose on some scale Gl = -3, “2 = -2, “3 = -1,
ﬁa =0, ”5 =1, 06 =2, d7 = 3 . We can specify this same scale
in terms of anv two of these v 's. The standard errors that we obtain

will depend in an overwhelming way not just on the ability scale, but on
how we specify it. We cannot rectify the standard errors by some
simple procedure, such as multiplying each by a constant.

For this reason, our procedure for specifying the ability scale
should depend only on parameters or functions of parameters that are
accurately determined by the data. A robust mean of the Ua might
seem attractive; however, any function of the Ca is counterindicated
by the fact that sometimes ba =+ v

The procedure used here is to choose a set of m discriminating,
moderately easy items and a set of r discriminatirs, moderately
hard items. We will hereafter define the origin and unit for our
new parameters, to be denoted by capital letters, so that the mean
of the (true) B -parameters for the easy items is zero, and the mean
for the hard items is one.

Qur new parameters are related to our old parameters (from

Section 2 or from Sectien 5) bv linear transformations:

A, = ka, , B. =K+ b./k , C. (15)
1 1 1

H
0

N =K+ [k
a a

(a=1,2,...,N: 1=1,2,...,u) .

where k and K are transformation constants to be determined.

Since
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r
ZB,=1 |, (16)

-
"
ER L
~ 3
™

1
o
=1
(i

the values of k and K are found by substituting (15) into (16) and

solving for k and K

ol

k=5b -b., K=——§ , (17)

where bo and bl are means tor m and r items, respectively.

To find the variance-covariance matrix for estimates of the upper-

case parameters, rewrite (15) as

©
|

= (Ga - bo)/k s Ai = kai , B, = (b

i i - bo)/k ’

(18)

Because of the special properties of maximum likelihood estimators,
equations (18) still hold when estimators are substituted for parameters.
Thus the sampling variances and covariances for estimates of the new
parameters can be computed from the sampling variances and covariances
already obtained at the end of Section 3. Formulas for doing this can

be written down from (18) bhv using the 'delta' method (Kendall &

Stuart, 1969, Chapter 10). For example,




. ) - ) .. f .
Cov(Ai, a) Cov(ai,da) Cov(ai,bo) ” Cov(ai,k)
ai P ai . - a, (v - 50) .
+ P Cov(ba,k) e Cov(bo,k) - kz Var k ,
(19)
Cov(bo,k) = Cov(bl,bo) - Var bO ,
oL L mr .
Cov(bl,bo) = o v Cov(bi,bj)

5. Parameter Estimation

The maximum likelihood estimators (MLE) satisfy the likelihood
equations (5). In (5), there is one equation for each parameter
omitting aN—l and 'y If all N+ 3n =M + 2 MLE are linearly
transformed, as for example in (15), the transformed parameters will
still satisfy the likelihood equations.

Since the origin and scale for the new parameters is chosen to
satisfy (16), then the appropriate k and K are obtained from (17)
after replacing 50 and Bl by their MLE. The likelihood function
(3) is unaffected by these linear transformations.

The computer program LOGIST identifies the parameters by still

another choice of origin and scale:
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~

1. a certain truncated mean of the & (a=1,2,...,N) is set
a ’

equal to zero,

2. a certain truncated standard deviation of the is set
a

equal to one.
We will use the usual lower case symbols for parameters on this
LOGIST scale. This should not cause confusion, since the lower-case

parameters of Sections 1-3 will not be needed again.
If we start with LOGIST ai , bi , ci , and Ga and determine

A ~ ~ -

k and K so that B. =0 and B 1, then the A, , B, , C.
0 1 i i i

~

(i=1,2,...,n ), and the Oa ( a

]

]

1,2,...,N ), calculated by
substituting estimated values into (15), will still satisfy the like-
lihood equations. The upper-case parameter estimates so obtained
should have the sampling variance-covariance matrix found theoretically
at the end of Section 4. Our remaining task is to compare an
empirically determined variance-covariance matrix of MLE's with the

corresponding theoretical matrix.

6. Recapitulation

We have used, at different points, three different arbitrary
scales for our parameters:

1. N and gy are assigned arbitrarily.

2. The origin is set at B , the unit is El.

0
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3. The origin is set at a truncated mean of the = |,
a

the unit is a truncated standard deviation of the
'.Ya .

Scale 1 (denoted by lower-case symbols) is most convenient
mathematically for the difficult task of inverting the M -by- M
information matrix. Scale 1 is not useful for practical purposes,
however, since its use grossly inflates all the sampiing variances.

Scale 2 (denoted by upper~case symbols) seems the simplest choice
in an attempt to keep the sampling error in the estimated origin and
unit as small as possible. The sampling variances computed for scale
1 are transformed (see eq. 19) to values appropriate for scale 2.

Although scale 2 is not the familiar one, the two item sets used to

specify the scale can be chosen so that the numerical values of Ai .

3, , C, differ little from the familiar a, , b, , and c,
i i i i i
produced by LOGIST.

Scale 3 (hereafter denoted by lower-case symbols) is the scale

used by LOGIST.

7. Empirical Estimation Procedures

As already stated,our theoretical results can be tousted only

if they are shown to be in reasonable agreement with empirical results.

For this purpose, artificial data "uiaH were created representing

the administration of a 45-item test to a random sample of 1500




~17-~

examinees. The 1500 v, were a spaced sample drawn from a distribution
of abilities from a regular test administration. Six replicate matrices
of lhiall were independently generated, using the same item parameters and
the same 1500 Ua . The variation in responses across these matrices thus

represents random fluctuations in ug for fixed a. , b, , ¢, and
a i

i i

Further replication was also built in: items 16-30 and items 31-45

had the same item parameters as items 1-15. The true lower-case and
upper-case item parameters are shown in Table 1 for items 1-15.

Six independent runs were made on LOGIST, one for each group of

1500 examinees. For each run separately, EO was calculated from items

4-9, 19-24, 34-39; El was calculated from items 10-15, 25-30, 40-45.

It is convenient for our ultimate interpretation of the standard errors

to be obtained that the true b, - EO = ,671 - (-.305)= .976. Since

this is close to 1.0, the scale unit for the capitalized parameters
is very close to the scale unit for the lower-case (LOGIST) parameters.
For each run separately, all lower-case parameter estimates were
linearlyv transformed as in (15) to the upper-case scale, using esti-
b mated k and K values. For the data reported in subsequent sections,

the true k = .976 and the true K = .312 . Since the six runs are

' independent, an unbiased empirical estimate of the sampling variance of

any parameter estimate T 1is given by
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Table 1

True (Upper Case) Item Parameters

Item C

.96 .99 -1.75 -2.01 .17
.34 .35 -1.33 -1.61 .17

O 00~ O W
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) S 2 ,
gui - (= rT)'] (2

vie

2
Sr:

the sum being across the six LOGIST runs. If the f in (20) were
normally distributed, s%/a% would have an F distribution with 5
and « degrees of freedom.

Since three different items have identical item parameters, the

for a single item parameter can be averaged across these three items

[ RO

to yield the best available unbiased estimate:

wl
'—])N
1t
W=
™ W
n
= I
—_
(%]
—
~—

Note that it would be incorrect to pool all I8 values of T in
an equation like (20), since T from the same LOGIST run are not
independent.

If 'I‘i and Si represent two different item parameters in the

same item

Ih

|

3(T.. <. Yy (22
S(le ul) b(li,sl) (
which is the same as (21) except that covariances are substituted 1o

variances. 1f Ti and Si represent item parameters in ditterent itoas,

then there are nine different sample covariances to be summed:
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S(T.,8,) =
S(T4,8))

O p—
w
~
-3,
“’J)
N
—
to
N
~

If T is an ability parameter, (20) still holds. For our purposes,

replacing T by @ , we can write

Ng

)

SoezN*lf &2 (24
g

where the sum is over all examinees in group g . When ~ 1is at the

midpoint of interval g , this average should be roughlv equal to the

o) obtained in Section 4.

If subscripts a and b denote different examinees in group

0%

(%]

PRI SR
Ng(Ng - 1) ah a’>'b

where the sum is over all pairs ol examinees in group g . If a and

b denote examinees in groups g and h respectively ( g # h ), then

Finally, if 'fl is an item parameter and examinee a is in proup v,

then




In computing (2:) - (27), examinees are grouped on their true values,
not on their estimated values.

A problem arises when an examinee obtains a perfect score or a
zero score. In this case his . is infinite and cannot be advantageousiy
used. Instead of making some ad hoc adjustment, the 17 examinees ior
whom this occurred were simplv removed from the group of examinees
studied, leaving N = 1483 . This has the effect of slightlv biasing

s+ for the remaining most extreme ~ values.

8. Numerical Standard Errors

Since the ¢ parameter of an easyv item usually cannot be
accurately estimated, LOGIST in ordinarv use does not estimate them
individually., This would prevent the empirical standard crrors of
Section 7 from agreeing with the theoretical standard errors of Section
4. since our main purpose is to show thac the method of seovion .+ can
give usetul results, the empirical and theoretical standard crrors

reported here are all estimated or calculated under the condition that

the true values of ¢, dre known tor 1 = 1,23, 4,5, 12, t¢~s
i
are easyv items, item 12 was included because of its low a, . Vor

empirical work, the true ¢ values were supplied to 1LOGIST, wihich held

them fixed while estimating all other parameters. For theoretical work,

the rows and columns of (7) corresponding to ¢, « ¢, + C, , ¢, , ¢_ .

T
|




were simply deletoed rrom the intornation natris (7)Y betore

and -

inversion.
Table 2 compares the enpiricai standard crrors ot secvion 7 fer

B with the theoretical standurd errors of Sectiou 4. The last three

columns show the squared ratios for the three replicatrions of each

item; each of these ratios will have an F  distribution with 5 and

x degrees of freedom provided i) B has a normal sampling distribution,

ii) B is unbiased, and iii) the theoretical ”ﬁ from Section &4 is

correct. An F above 2.2]1 or below .229 is significant at the (two-

tailed) 10 percent level. Eleven of the ratios are significant. The

rimber of ratios less than 1 is approximatelv the same as the number

af ratios greater than 1.

In the past, the onlv available standard errors for item param-
eters assumed that the were known. Such standard errors for ﬁ .
for known + , are given in the second cclumn of the table. A com-
parison of second and third columns shows verv close agreement except
for the three easiest items (1,2,3). For these three (tems, our new
theoretical value = larcer and asrees betver with the empirical
value.  {his gives support to the new theoretical values. The faet
*hat the empirical values (from Section 7) tend to be larger than
the theoretical (from Section 4) could be due to n and XN not
being large enocugh for asymptotic results. A second likelv explana-
tion is that LOGIST was not really run to complete conversence.

Table 3 makes comparisons for A . Again the standard errers
of A with - unknown agree closelvy with the results when is
known.  The empirical standard errors, although correlating well with

the theoretical, seem to be larger. Eleven of the F ratios are

esestssssnsosntmensiilesssnete s ounae ERFER e s
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Table 2
Theoretical and Empirical Standard Errors for B
<B] A ri\3 SB
Item 2,2
No. (  known) (Sect. 4) (Sect. Sp/"y
1% .110 .156 .183 .23 56 3.34~
2% .186 .201 .237 1.76 1.49 .93
3% L045 .071 .063 1.38 59 L4l
4% .060 .068 .066 .90 76 1.17
S5* .100 .099 .103 .37 .40 2.48
6 .125 121 .131 .28 .63 2.6%
7 .113 .110 .100 1.24 .65 L8
¢ .084 .083 . 088 2.31+ .97 167
S .055 .055 .067 7 2.63* 1.47
20 .069 . 069 .106 3.19+ 3.62° .33
11 .100 . 097 .122 1.45 2.55% 70
12% .094 .091 .087 .85 1.27 .66
13 .086 .083 .094 1.01 1.2 1.57
14 077 .076 JA11 1.19 1.49 3.75%
15 .072 .075 .093 .40 2.62* 1.65

'Significant at 10 percent level.

*The

C

parameter for these items is treated as knownm.
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Table 3

Theoretical and Empirical Standard Errors for

N, AT ®A
1% .0R8 .105 L1461
2% .044 . 046 .039
3% .097 117 .094
4% .060 065 .080
5% 045 047 .054
6 .103 .102 .123
7 .105 .105 147
8 113 .115 .159
9 .123 .128 .182

10 .184 .193 .160
11 115 120 .132
12% .060 .060 .076
13 .151 157 .187
14 .209 .218 . 240
15 .222 .233 .182

o

b

.54

.60~
.74
.22+
. 86
.93
.51
.35+
.29
. 80
.79
.34
.94
.79
/N

.93

*Significant at 10 percent level.

*The ( parameter for these items is treated as known.
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significant. Similar statements apply to Table 4, which shows the
comparisons for é .

Table 5 compares standard errors for .- . Let us leave column 3
for later discussion. Columns 4 and 5 show standard errors of ‘ cor-
responding to the -+ value in the first column; column 6, however,
is computed from (2) for the group of Ng people falling in the class
interval with midpoint ~ . There is good agrcement between empirical
and theoretical standard errors except for * < -1.5 . For low - ,
asymptotic results do not appear with the usual n and N .

Table 5 shows close agreement of our standard error from Sections
2-4 with the standard error of ; wvhen the item parameters are known. The
agreement shown here and in previous tables suggests that (1) is a good
approximation to the diagonal of (2) and similarly for item parameters,
that (2) agrees well with the empirical standard errors.

A comparison of the third and fifth columns in Table 5 shows what
happens to ~°  when all Ci Tust be estimated from the data: For
v =1, is sharply affected; for 0 < ..~ 2.5, there is verv
little effect.

Table 6 contains the squared ratios of the empirical standard errors
Lo the theoretical stardard errors for the five * closest to the midpoint
of the intervals, and within at least .1 of the midpoint. Two of the
groups had only two abilities within this restriction. 1f similar caveats
apply as for the item parameters these ratios will have an F distribution
with five and + degrees of freedom. Only eight of the ratios are

significant at the two-tailed 10% level, and only 16 are greater than I.

o
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Table 4

Theoretical and Empirical Standard Errors in C

Item I
No.* ¢
6 .056
7 . 049
8 .037
9 .024
10 .025
11 .036
13 .026
14 .019
15 .015

o~

C

.058
.050
.037
.025
.026
.037
.027
.020
.015

°¢

.063
.038
.045
.039
.034
.043
.037
.028
.016

+Significant at 10 percent level,

“Cl,...,CS , and C

12

2,2

s¢/7¢ )
.39 LG4 2,79+
.40 .35 .95
.08+ .76 43
.80 4,71 1.83
24+ 2.68" .27
.98 2.67" 41
.89 1.88 2.90°
.98* 2,55+ 43
.64 1.23 1.71

are treated as known.
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Table 5

Theoretical and Empirical Standard Errors for 0

ALl C C] to C5 and C10 treated
i 2
unknown as known o
N -

| i _ b . "

~2.75 10 2.090 .951 .966 *
~2.25 35 1.296 .686 .699 1.134
~-1.75 93 .861 .516 .525 .797
~1.25 219 .607 .400 L404 427
-.75 332 456 .341 0342 .332
-.25 326 .349 .295 .295 .279
.25 227 .278 .262 .263 .274
.75 136 .261 .260 .261 .286
1.25 77 .303 .289 .290 . 349
1.75 25 422 .384 .387 412

2.25 3 .628 .575 .580 *

2.75 0 .931 874 .878 *

*Not computed because ot small N

™
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Table 6
F Ratios for 6
s%/c%
-2.75 3.73+% 4 41+
-2.25 .85 .78 .43 11.34% 1.16
-1.75 .57 1.90 1.62 .32 18.95*
-1.25 .98 .63 .96 .95 77
-.75 .26 .94 .63 .81 .63
-.25 .71 1.81 .73 .04+ .48
.25 .18+ .98 .74 .80 77
.75 .61 .35 1.41 1.21 .64
1.25 2,76+ 1.82 .98 1.08 1.84
1.75 .67 41 1.08 1.45 1.78
2.25 11+ .36
2.75%

tSignificant at

*There were no

10 percent level.

3

between 2.65 and 2.85.
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Table 7 presents the theoretical standard errors of A, B, and

C , obtained by the method of Sections 2-4, when all Ci must be esti-

mated from the data. It is interesting to compare these values with

those in Tables 2-4 where Cl,...,C5 , and C12 were treated as known.

We find that the standard errors of B1 to B5 are increased

drastically by ignorance of Cl to CS ; all other ﬁ(Bi) are much
increased, except for 1 = 11, 13, and 14. All Ai show sharply
increased standard errors. For items for which Ci must be estimated,

o1: the otner band, the standard errors of Ci are little affected byv

knowledye or ignorance of Cl,...,C . A likely explanation for this

5:C12
is that errors in estimatiag the scale unit Bl affect the standard
errors of the Ai and the Bi , but not of the Ci .

We have found in Tables 2-7 some illustrative answors to the
questior.: How do estimation errors on one set of items affect the
accuracy of e¢stimated parameters foir a different set of items? Such
effects could not be quantified until now since the standard error of
an item parameter estimate was previously known only for fixed © .

It is only through the sampling fluctuations of 1t that estimation
errors for one item can affect parameter estimates for another item.

With 18 Ci treated as known, the Fishter information matrix inverted
for this study has 3 x 45 - 18 + 1498 = 1615 rows and columns. The
matrix inversion by the method of Section 4 used 1232K bytes of memory on
an IBM 3031 and took 32 seconds. The computer program dealt with a 45~

item test; it did not take advantage of the fact that the 45 items

consisted of 3 replicate sets of 15 items each.
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Table 7
Standard Errors (2) of Item Parameters when

All Ci Must be Estimated

Item 5 . .

No ] A <
1 .52 .23 .60
2 2.54 .13 .72
3 .35 .32 .10
4 .26 .15 .14
5 .97 .10 .32
6 .19 .18 .07
7 .16 .18 .06
8 .14 .21 .041
9 .12 .26 .026

10 .11 .32 ,026

11 .10 .18 .039

12 .18 14 .07

13 .09 .23 .027

14 .08 31 .020

15 .10 .33 .015

o i e e e
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In order to verify the numerical accuracy of the inversion, the
information matrix and the variance-covariance matrix were multiplied.
The result was an identity matrix accurate to 10 decimal places. The
variance-covariance matrix obtaired in double precision agreed with the

matrix obtained in quadruple precision to all six decimal places printed.

9. Sampling Covariances and Correlations

When item parameters are known, A and Hb (a#b) are
uncorrelated. When ability parameters are known, estimated item param-
eters for different items are uncorrelated. When hoth item and ability
parameters are estimated, in general all estimates are correlated
The computer printout of the sampling correlations for the present
study consists of 10 correlation matrices. These need on}y be sum-
marized here.

Table 8 shows the theoretical ( T ) and empirical ( E ) cor-

relations between estimates of two different parameters for the same

item. The correlations are generally substantial. For comparison,

the theoretical correlations when the abilities are known are included.

The empirical correlations are obtained bv dividing the estimated sampling

covariance by the square roots of the estimated sampling variances. 11

the empirical correlations here have roughly 15 degrees of freedom, their
, R s , 2 , .

standard error is roughly (1 - . 7)/v15 = ,26(1 - %) . In view of

their standard errors, there is very satisfactorv agreement of

empirical with theoretical correlations.

Table 9 shows both theoretical and empirical correlations for

the Bi (i=1,2,...,15). The corresponding standard errors are
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given in parentheses in the diagonal. The only theoretical correl-

ations above .20 are among B

~

1 B2 . B3 , and B

four easiest items. Any error in estimating the scale unit B1 - EO

4" These are the

would seriously affect all these items in the same wav. It is hard
to draw other useful generalizations from this table.

The corresponding table for the Ai (i=1,2,...,15 ) shows

only 3 theoretical correlations above .20: 13 < 27 , f14 = 20 ,
= : 3 = - e = - 2
34 .23 . With two exceptions ( Y67 .013 , 6,12 .002 ),
all theoretical correlations are positive.
The highest theoretical correlation among the Ci (1i=6,7,...,
11 and 13, 14, 15 ) is »p = .04 . All correlations are positive.

67

The theoretical correlations between Ai and Bj (i# 3) are
all below .20 in absolute value, except for items 1-4, which vary from
.14 to .38. For Bi and Cj (i#3; i+#1,2,...,5,12 ) there are

no correlations above .25 in absolute value. For Ai and Ci , there

are no correlations above .20 in absolute value.

The theoretical correlations between a and b (a#b)

are all less than .04 in absolute value. Between a and Bi , the

largest correlation in absolute value is .15 (when 1 =1 and

©= =2.25). Between a and Ai , the largest is .12 (when i =1

and = -2.25 ). Between a and Ci , the largest is .06.

Y
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Summary

When both abilities and item parameters are unknown, the asymptotic
sampling variance-covariance maLrix‘developed in this paper appears to
provide useful values for the standard errors needed for further
research in item response theory. The magnitude of the numerical
values in the matrix were very much affected bv the method used to
define the scale. For a set of artificial data, this variance-
covariance matrix compared satisfactoriallv with empirical results;
also with the variance-covariance matrices found by the usual formulas for
the case where the abilities are known or where the item parameters are
known.

With this matrix, the ¢itect on other items of including items
with poorly determined parameters can be studied. Including items with

soorlv determinad ¢ 's increases the standard errors of all of the a 's

and b 's but not of the other ¢ 's. The effect of different distribu-
tions of abilities on the accuracy of item parameters can also be studied.
Hopefullv a goodness-of-{it test can now be developed for the three-
parameter model.

The standard errors of item parameters can now be studied for a
situation of common occurrence in equating and item banking: FEach of
two tests containing common items is administered to a different group
of examinees; all parameters are estimated in the same 1.OGIST run.
It is of particular interest to determine how the number of common items

affects the standard error of the parameter estimates.
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